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Abstract: The classical works in finance and insurance for modeling asset returns is the 

Gaussian model. However, when modeling complex random phenomena, more flexible 

distributions are needed which are beyond the normal distribution. This is because most of the 

financial and economic data are skewed and have “fat tails”. Hence symmetric distributions like 

normal or others may not be good choices while modeling these kinds of data. Flexible 

distributions like skew normal distribution allow robust modeling of high-dimensional 

multimodal and asymmetric data. In this paper, we consider a very flexible financial model to 

construct comonotonic lower convex order bounds in approximating the distribution of the 

sums of dependent log skew normal random variables. The dependence structure of these 

random variables is based on a recently developed generalized multivariate skew normal 

distribution, known as unified skew normal distribution. The approximations are used to 

calculate the risk measure related to the distribution of terminal wealth. The accurateness of the 

approximation is investigated numerically. Results obtained from our methods are competitive 

with a more time consuming method known as Monte Carlo method. 

 

Keywords and phrases: Unified skew normal distribution, additive properties, log unified skew 

normal distribution, convex order, comonotonicity, value at risk. 

 

 

1. Introduction 

In this paper we investigate the approximations for the distribution function of a sum of log skew normal 

random variables. Let α0,α1,α2,...,αn−1 be non-negative real numbers and Y = (Y1,Y2,...,Yn)T be a multivariate 

skew normal random vector with the specified mean vectorand variance-covariance matrix and satisfying 
additive properties. Define  0,1,...,n − 1, that is, Zi’s are sums of the components 

(Y1,Y2,...,Yn). With the components so defined, consider the sum 

.                                          (1.1) 

From economic or actuarial point of view, the sum S could be interpreted as the final wealth or the terminal wealth 

or the accumulated value of a series of deterministic saving amounts or alternatively the accumulated value of a 
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series of payments. In this situation, αi (i = 0,...,n−1) represents yearly saving in period i or amount invested in 

period i, Yi+1 refers to the random rate of return in period i for i = 0,...,n−1. The term

, where Pk is the price of the asset at the period k = 0,...,n ; is 

called the random log-return in period k and Zi denote the sum of stochastic or random returns in the period i = 

0,...,n−1. With some suitable adjustment, S could also be referred as the present value of a series of payments. 

More precisely, if −Zi denotes the stochastic log-return over the period [0,i], then eZi represents the stochastic 

discount factor over the period [0,i]. In this situation, the sum S is the present value of αi (Vanduffel et al. 2008, 

Roch and Valdez (2011)). 

The sum defined in (1.1) plays a central role in the actuarial and financial theory because it allows computation 

of risk measures such as value at risk or stop-loss premium. To calculate the risk measures we need to evaluate the 

distribution function of S. Unfortunately, the distribution of the sum S (of log-normally or log-skew normally 

distributed random variables) is not available in closed-form. It is possible to use Monte Carlo simulation method 

to numerically approximate the distribution function. However, Monte Carlo simulation of the distribution is often 

timeconsuming. Thus one has to find alternative way to approximate the distribution of the sum. Among the 

proposed solutions, moment matching methods and inverse gamma approximations are commonly used. Both 

methods approximate the unknown distribution function by a given one such that the first two moments coincide. 

Kaas et al. (2001) and Dhaene et al. ( 2002a, 2002b) propose to approximate the distribution function of S by 

so called “convex lower bound”. The underlying idea of convex lower order bound is to replace an unknown or 

too complex distribution (for which no explicit form is found) by another one which is easier to determine. In this 

approach, the actual distribution is known to be bounded in terms of convex ordering to the approximated 

distribution. To be more precise, the distribution function of  is approximated by the distribution 

function of Sl, where Sl is defined by, 

S𝑙 = ∑ 𝛼𝑖𝐸(𝑒𝑍𝑖|𝛬)𝑛−1
𝑖=0 .                                                           (1.2) 

 

An appropriate choice of the conditioning random variable Λ is required. This approach has twofold 

advantages. Firstly, use of this approach transforms the multidimensional problem caused by (Z0,Z2,...,Zn−1) to a 

single dimension caused by Λ. Secondly, an appropriate choice of Λ (that makes the expectation in (1.2) non-

decreasing or non-increasing function of the conditioning random variable Λ) will make a comonotonic sum, i.e, 

the elements of the sum in (1.2) possess the so called comonotonic dependence structure. Using the additivity 

properties of sum of comonotonic random variables, risk measure related to the distribution function of S is then 

approximated by the corresponding risk measure of Sl. According to Kaas et al. (2001), comonotonic upper bound 

for the sum in convex order sense can also be derived using the result 

∑ 𝑋𝑖

𝑛−1

𝑖=0

≤ ∑ 𝐹𝑋𝑖
(𝑈)

𝑛−1

𝑖=0

 

 

where U is the uniform random variable over (0,1). However, the comonotonic upper bounds generally 

provide too conservative estimates of the cumulative distribution function (Roch and Valdez 2011). Thus we 

only discuss convex lower bound here. The model given in (1.1) was studued by many authors as referred 

above. Our work in this paper is the natural extension of the work by Marin-Solano et al. (2010), and Roch 

and Valdez (2011). 

The rest of the paper is organized as follows. In Section 2 we present some basic properties of the unified 

skew normal (SUN) density such as the moment generating function, mean and variance, and establish the 
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additive stability. Section 3 provides basic concepts and important result on convex ordering and convex order 

bounds. Section 4 discusses in detail the construction of lower convex order bounds for the distribution of sum 

of log unified skew normal random variables. Section 5 provides an extension of section 4 considering the 

construction of lower bounds for a portfolio. Numerical illustrations are provided in Section 6. The paper 

concludes in Section 7 in which some discussions and suggestions are provided. 

 

2. The unified skew normal distribution and its important properties 

Skew normal class of distributions is a natural extension of normal distribution which is developed to 

include the skewness of data. This class of distributions has properties that resemble to those of the normal 

distribution. In this paper, we consider the multivariate unified skew normal distribution introduced by 

Arellano-Valle and Azzalini (2006). In addition to being normal when the skewness parameter equals zero, 

the family has properties similar to the normal distribution and yet is skew. 

Suppose φd(y −µ;Ω) denotes the d dimensional multivariate normal density with mean vector µ and the 

covariance matrix Ω, and Φd(y − µ;Ω) is the corresponding distribution function. 

Definition 2.1. (Arellano-Valle and Azzalini (2006)) A random vector y ∈  <d is said to follow unified 

skew normal distribution, if its density function is given by 

 

𝑓(𝑦) = φ
𝑑

(y −  μ;  Ω)
𝛷𝑚(𝛾 + ∆𝑇 𝛺 ̄−1𝜔−1(𝑦 − 𝜇); 𝛤 − ∆𝑇 𝛺 ̄−1∆)

𝛷𝑚(𝛾; 𝛤)
                         (2.1) 

 

where µ  and  is the correlation 

matrix with ω a d × d diagonal matrix formed by the standard deviations of Ω; hence Ω = ωΩ¯ω. 

 

y 

−4 −2 0 2 4  

δ = 0  
δ = − 0.5  
δ = 0.8  
δ = −  0.89  
δ = 0.97 
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Figure 1: Univariate SUN density for somme selected values of δ. 

The density is called SUN (acronym for unified skew normal distribution) and is denoted by 

SUNd,m(µ,γ, ω̅ , Ω∗), where ω¯ = ω1d is the vector of diagonal elements of ω. Note that if ∆ equal to zero, 

then the density reduces to the d dimensional multivariate normal distribution. 

The corresponding distribution function of y is given by, 

  . 

The derivation of the SUN density was given in Arellano-Valle and Azzalini (2006). The graph of the 

univariate SUN density is given in Figure 1 for different values of the skewness parameter δ. 

One of the advantages of parameterization in (2.1) resides in the additive stability of the distribution. Gupta 

et al. (2013) proved the closure properties of independent SUN random vectors: closure under linear 

transformations, marginal and conditional distributions and joint distribution from its members. In what 

follows, we will state some of these important properties. For more details and the proofs of these results, we 

refer to Gupta et al. (2013) and Arellano-Valle and Azzalini (2006). 

 

Theorem 2.1. If y ∼ SUNd,m(µ,γ,ω¯,Ω∗), then its m.g.f is given by 

 

𝑀𝑦(𝑡) = 𝑒𝑥𝑝(𝜇𝑇𝑡 +
1

2
𝑡𝑇𝛺𝑡)

𝛷𝑚(𝛾+∆𝑇𝜔𝑡;𝛤)

𝛷𝑚(𝛾;𝛤)
, 𝑡 ∈ 𝑅𝑑                            (2.2) 

 

Theorem 2.2. If y ∼ SUNd,m(µ,γ,ω¯,Ω∗), then the mean vector and the covariance matrix of y are given by 

 

E(y)  =  μ +
Φ𝑚

∗(γ; Γ)

 Φ𝑚(γ; Γ)
  Φ𝑚(γ;  Γ)                                        (2.3) 

And 

𝑉𝑎𝑟(𝑦) = 𝛺 +
𝛷𝑚

∗∗(𝛾;𝛤)

𝛷𝑚(𝛾;𝛤)
−

𝛷𝑚
∗(𝛾;𝛤)

𝛷𝑚(𝛾;𝛤)

𝛷𝑚
∗𝑇(𝛾;𝛤)

𝛷𝑚(𝛾;𝛤)
                              (2.4) 

where ;Γ) = T ωt;Γ) ωt;Γ)t=0. and 𝛷𝑚
∗∗(γ;Γ)= 

𝜕

𝜕𝑡𝜕𝑡𝑇 𝛷𝑚 (γ+∆𝑇ωt;Γ) .Φm(γ; Γ) t=0. 

 

Using Lemma B.1 given in the Appendix of Domingnez-Monila et al. (2001) the term Φ ;Γ) could be 

replaced by, 

𝛷𝑚
∗ (𝛾; 𝛤)  = ∑ ∑(∆𝑇𝜔)𝑖𝑗 𝛷𝑚

{𝑗}
(𝛾; 𝛤)

𝑚

𝑗=1

𝑑

𝑖=1

𝑒𝑖 
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where (∆T ω)ij is the (i,j)th element of the matrix ∆T ω, ei is a d × 1 vector with one in the ith position 
and zero elsewhere, and 

;Γ) = φ(γj;Γij) Φm−1(γ−j;Γ|γj) 

where γ−j is the vector γ without the jth element. 

Corollary 2.1. Let y be a random vector with a unified skew normal distribution, SUNd,m(µ,0,ω¯,Ω∗), with 

. Then the first two moments of y are: 

 

Example 2.1. Suppose Y ∼ SUN1,1(µ,0,w,Ω∗) with . Then 

f(y) = 2φ(y;µ,σ2)Φ(δv−1w−1(y − µ);g2 − δ2/v−1) 

• the mean of this density is 

 
• and the variance is 

 

One of the most important additive properties of the SUN random vector is the closure under the linear 

transformation property. Similar to the multivariate normal distribution, SUN distribution is closed under full 

row (or column) rank linear transformation. This property is useful to establish joint distribution of the 

independent random variables from the same family. 

 

Theorem 2.3. Let y ∼ SUNd,m(µ,γ,ω¯,Ω∗) and A be an n × d (n ≤ d) matrix of rank n. Then 

, 

where 

µ , 

Ω¯A = (AωAT )−1AΩAT (AωAT )−1 and ΩA = AΩAT = ωAΩ¯AωA. 

As previously mentioned, we can easily build the joint distribution of independent SUN random variables 

which again belongs to the same family. In the following Theorem, we will show that if we have a collection 
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of n independent SUN random variables, then the joint distribution of the n random variables is again SUN 

distributed random variable. As mentioned by Gupta et al. (2004) , this property does not hold for the 

multivariate skew normal distribution defined by Azzalini and Dalla Valle (1996). 

In what follows the symbols “⊗” and “⊕” would be used to indicate the Kronecker matrix product and 

the matrix direct sum operator: the Kronecker product for any two matrices Am×n = 

(aij) and Bp×q = (bij) denoted by A ⊗ B results an mp × nq matrix defined by 

 

For the properties of the Kronecker matrix product we refer to Gupta and Nagar (2000). 

The direct sum operator of two matrices Am×n = (aij) and Bp×q = (bij) denoted by A ⊕ B results an (m 

+ p) × (n + q) matrix defined by 

 

That is matrix direct sum operator gives a block diagonal matrix. 

Note: It is easy to see that . For other properties of matrix direct sum operator we refer to 

Horn and Johnson (1991). 

 

Theorem 2.4. Suppose y1,...,yn are independent random vectors with yi ∼ SUNdi,mi(µi,γi,ω¯i,Ωi∼). 

Then the joint distribution of y1,...,yn is given by 

y , 

where 

d† = ∑ d𝑛
𝑖=1 i, m† = ∑ X𝑛

𝑖=1 mi, µ† = (μ1
𝑇

 , . . . μ𝑛
𝑇)𝑇

 , γ† = (γ1
𝑇

 ,...γ𝑛
𝑇)T , ω̅† = (ω̅1

𝑇
 , . . . ω̅𝑛

𝑇)𝑇 

and 

. 

As we have seen, in the previous theorem the SUN random vectors need not to be identically distributed. 

Addition of identical assumption leads to the following corollary. 

Corollary 2.2. If y1,...,yn are independent and identically distributed (iid) random vectors from the 

SUNd,m(µ,γ,ω¯,Ω∗) distribution, then the joint distribution of y1,...,yn is 

y , 

where 
d† = nd, m† = nm, µ† = 1n ⊗ µ, γ† = 1n ⊗ γ, ω¯† = 1n ⊗ ω¯, 
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and 

. 

Another interesting property of the SUN family is the closure under the marginalization and 
conditional distributions. These results are stated in the following theorems: 

Theorem 2.5. Let y be a random vector distributed as SUNd,m(µ,γ,ω¯,Ω∗) and be partitioned 

as y . Consider a k × d matrix A = (Ik 0), with a k × k identity matrix Ik and a k × (d − k) zero matrix 

0. Then the marginal distribution of y1 = Ay is , 

where µ , 

, and . 

Theorem 2.6. Let y be a random vector distributed as y ∼ SUNd,m(µ,γ,ω¯,Ω∗). Consider two subvectors y1 and y2, 

where y  dimensional. Suppose µ, ω,¯ ∆ and Ω¯ are partitioned as in above Theorem. 

Then the conditional distribution of y1 given y2 = yz0 is , where 

µ1. , 

with , 

 

 and . 

3. Convex order and convex order bounds 

Definition 3.1. Consider two random variables X and Y such that E[φ(X)] ≤ E[φ(Y )] , for all the convex functions 

φ, provided expectations exist. Then X is said to be smaller than Y in the convex order denoted as X ≤cx Y . 

We state an important result related to the convex ordering of random variables in the following lemma. We 

need this result to evaluate the lower bounds for the distribution of sum of log unified skew normal density. 

Lemma 3.1. (Dhaene et al. (2002b)) For any random vector X = (X1,X2,...,Xn)
T and any random variable Λ, which 

is assumed to be a function of X, we have, 

.                                                (3.1) 
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According to this result, we can approximate the sum S in (1.1) by the sum Sl in (1.2). However, as 

mentioned in section 1, an appropriate choice of Λ is required as different choices of Λ lead to different 

approximations. Interesting choices of Λ are those that make the sum Sl a comonotonic sum. We use an 

important property of comonotonic sum to compute risk measure in section 6. Detailed information about 

convex order bounds and comonotonicity can be found in Dhaene et al. (2002a, 2002b). 

Besides computing lower bounds for the terminal wealth, as an application we discuss the evaluation of 

risk measures of S. A risk measure provides the information contained in the distribution function of a random 

variable in one single real number. One of the most commonly used risk measures in the field of actuarial 

science and financial economics is the p-quantile risk measure, based on a percentile concept known as value-

at-risk (VaR). In probabilistic terms, the VaR at level p is defined as the 100p% quantile of the distribution of 

the terminal wealth. More precisely, for any p ∈  (0,1), the p-quantile measure or VaR for a random variable 

X, denoted by Qp[X], is defined as 

 

Qp[X] = inf{x ∈ <|FX(x) ≥ p}                                               (3.2) 

When the marginal risks possess the comonotonic dependence structure, the global value-atrisk can be 

obtained by summing up the marginal VaR measures. Thus for a comonotonic random vector X = 

(X1,X2,...,Xn)T and the sum , the value at risk (VaR) is 

 

QP (S) =∑ 𝑄𝑃 [𝑋𝑖]𝑛
𝑖=1  

 

4. Distribution of sum of log SUN random varibles 

In this section we derive the bounds to approximate the distribution of sums of log unified skew normal 

variables. The bounds that we present here are natural extensions to the results obtained by Marin-Solano et 

al. (2010) and Roch and Valdez (2011). The derivation of this bound requires some results that are presented 

in the following lemmas. Recall that Yk denotes the random logreturn in the period k, for k = 1,2,...,n and Zi 

denotes the accumulated returns from the time i to the final time t = n. 

Lemma 4.1. (Joint distribution of Y = (Y1,...,Yn)
T ) Let Yk,k = 1,...,n be univariate iid random variables distributed 

as 

SUN1,m(µ,γ,ω̅, Ω∗),where . 

Then the distribution of Y = (Y1,...,Yn)
T is 

SUNn,mn(μ𝑌 ,γ𝑌 ,ω̅ 
𝑌

 ,Ω𝑌
∗  ), 

where 

µY = 1n ⊗ µ, γY = 1n ⊗ γ,ωY = In ⊗ ω ω¯Y = ωY ⊗ 1n, 

and 
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Proof. The proof follows from Theorem 2.2 by noting that  for any matrix A where In is an n × n 

identity matrix and 1n is a unit vector of dimension n.   

Lemma 4.2. (Joint distribution of Z = (Z0,...,Zn−1)
T ) Let Zi,i = 0,...,n − 1 be the sum of returns of one unit of capital 

invested from time t = i to the final time t = n, that is, Zi = . Let T ∈ <n×n be an upper unit triangular 

matrix. Then the distribution of Z =(Z0,...,Zn−1)T is 
 

SUNn,mn(μ𝑍,γ𝑍,ω̅𝑍 ,Ω𝑍
∗ ) 

where 

µ , 

and 

 
Proof. The proof follows from Theorem 2.3 with T being the matrix of coefficients.   

As mentioned in Section 1, the comonotonicity of the convex lower bound strongly depends on the special 

choice of the conditioning random variable Λ. Therefore, it is required to choose a functional form of this 

random variable. Since a good choice of Λ is important in determining the accurate approximations for the 

final wealth, different choices of Λ have been proposed in the literature. Following Dhaene et al. (2002a), we 

will choose Λ in such a way that it becomes a linear transformation of a first order approximation to Sn. This 

is known as “Taylor-based” approach. In this approach, Λ is defined as, 

 

Λ = ∑ 𝜈𝑖𝑍𝑖
𝑛−1
𝑖=0  

with the choice of the coefficents νi, as νi = αieE[Zi]. If the random variables Yk,k = 1,...,n are iid then the coefficients 

νi is given by νi = αieE[Zi] = αieE[Y ]. 

Lemma 4.3. (Distribution of Λ) Let the random variable Λ be defined by   and 

V = (ν0,...νn−1) be a row vector. Then the distribution of Λ is 

 

where 

µΛ = Vµ , 

and 

. 

Proof. The proof follows from the Theorem 2.3 with V being the vector of coefficients.   

Lemma 4.4. (Joint distribution of Λ and each of the elements of vector Z) Let Si ∈ <2×n be a matrix with the first 

row as V and second row of 0’s except in column i+1 where the 0 is replaced by 1. That is 
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.                                              (4.1) 

Then the distribution of   is 

, 

where 

µ , 

, 

and 

. 

Proof. The proof follows from Theorem 2.3 with Mi being the matrix of coefficients.   

Lemma 4.5. (Conditional distribution of Zi|Λ = λ) Let µXi,Ω¯Xi,ω¯Xi and ∆Xi be partitioned as in Theorem 2.5. Then 

the distribution of Hi = (Zi|Λ = λ) is given by 

SUN1,mn(µHi,γHi,ω¯Hi,Ω∗Hi), 

where 

µHi = µ2 + Ω21Ω−211(λ − µ1), γHi = γXi + ∆T1 Ω¯−111ω2−1(λ − µ1), ω¯Hi = ω¯1, 

ΓHi = ΓXi − ∆T1 Ω¯−111∆1,∆Hi = ∆2 − Ω21¯ Ω¯11−1∆1, Ω¯Hi = Ω¯22 − Ω¯21Ω¯11−1Ω¯12, ΩHi = ωHiΩ¯HiωHi, and 

. 

Proof. The proof follows from Theorem 2.6.   

Theorem 4.1. (The lower convex order bound) The lower convex order bound Sl which is used to approximate the 

distribution function of the sum  is given by 

 

                           (4.2) 

   
with µHi, ΩHi, 

γ
Hi, ∆Hi, ωHi, and ΓHi defined in Lemma 4.5. 

Proof. By Lemma 3.1 the distribution of   is approximated by the distribution of the sum 

. 

 
 

Thus the lower convex order bound Sl is given by 
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Sl =  ∑ E𝑛−1
𝑖=0 [αie𝑍𝑖 |Λ = ∑ 𝜈𝑖𝑍𝑖

𝑛−1
𝑖=0 ] 

=   ∑ 𝛼𝑖E𝑛−1
𝑖=0 [ e𝑍𝑖 |Λ =∑ 𝜈𝑖𝑍𝑛−1

𝑖=0 ].                                                    (4.3) 

The expectation in (4.3) is the m.g.f of a random varible y evaluated at t = 1 where y is distributed as 

 

. 

From Theorem 2.1, this m.g.f is obtained as 

. 

Therefore from (4.3) the convex lower order bound is 

;Γ  

  
 

5. Lower bound in multi-asset case 

In the previous section we consider only one asset while deriving the distribution of terminal wealth. In 

the same fashion it is also possible to find the lower bound when the portfolio consists of multiple assets 

including risk-free and risky assets. Throughout this section we will assume that the portfolio has one risk-

free asset (e.g cash account) and multiple risky assets (e.g stock funds). Following the previous section we 

will derive the lower bound step by step. However, we will have to redefine some variables to accommodate 

the case of multiple assets. 

Let  be the sum of returns of one unit of capital invested at time t = j to the final time t = n of assest i,i 

= 1,...,q, that is 

 

Z𝑗
𝑖

 = ∑ 𝑌𝑘
𝑖𝑛

𝑘=𝑗+1 , 

and the terminal wealth S(π) is given by 

S(π) =∑ ∑ 𝜋𝑖𝛼𝑗 𝑒𝑥𝑝(𝑍𝑗𝑖)𝑛−1
𝑗=0

𝑞
𝑖=1  + ∑ 𝜋0𝛼𝑗 𝑒𝑥𝑝((𝑛 −  𝑗)𝑟)𝑛−1

𝑗=0 , 

where π = (π1,...,πq)T is the vector of proportions of savings amounts in the risky assets and π0 is the weight 
in the risk-free asset. 

Lemma 5.1. (Joint distribution of Y ) Let the joint returns random vector 

Y k,k = 1,...,n be iid distributed as 

SUNq,m(µ,γ,ω¯,Ω∗),where . 

Then the vector of log returns Y  is distributed as 
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, 

where 

µY = 1n ⊗ µ, γY = 1n ⊗ γ, ωY = In ⊗ ω, ω¯Y = ωY ⊗ 1n 

and 

. 

Proof. The proof follows from Corollary 2.2   

Lemma 5.2. (Distribution of Z  ) Let Z   be the vector of accumulated 

returns, where . Let T ij be an m . n dimensional row vector of 00s except in the 

(i + q(j + k))th positions, k = 0,1,...,n − (j + 1) where they are 10s and let T be a matrix whose rows are defined by 

vectors T ij. Then the distribution of Z is 

, 

where 
µ , 

and 

. 

Proof. The proof follows from Theorem 2.3 with T being the matrix of coefficients.   

As in the single asset case, we use “Taylor-based” approach for choosing the random variable Λ. The random 

variable is accommodated to the multi asset case in the following way: 

q n−1 

Λ(π) = XXνji(π)Zji 

i=0 j=0 

with the choice of the coefficents νj
i, as νj

i(π) = πiαjeE[Zji]. If the random variables Yk,k = 1,...,n are iid then the 

coefficients νj
i is given by νj

i(π) = πiαjeE[Zji] = πiαje(n−j)E[Y i], where E[Y i] denotes the expectation of the ith marginal 
distribution of the random vector Yj. 

Lemma 5.3. (Distribution of Λ) Let the random variable Λ(π) be defined by 

 and let V = (V1,...Vq), where . 

Then the distribution of Λ(π) is 

, 

where 

µΛ = VµZ, γΛ = γZ, ωΛ = V ωZV t ω¯Z = ωΛ1, 

and 
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. 

Proof. The proof follows from the Theorem 2.3 with V being the matrix of coefficients.   

Lemma 5.4. (Joint distribution of Λ(π) and Zj
i) Let Mj

i ∈ <2×q·n be a matrix with the first row as V and the second 

row of 0’s except in column i · n − (n − j − 1),i = 1,...,q,j = 0,...,n − 1 where the 0 is replaced by 1. Then the 

distribution of X   is 

, 

where 

µXji = MjiµZ, γXji = γZ, ωXji = MjiωZMjTi ω¯Xji = ωXji12, 

 
and 

. 

Proof. The proof follows from Theorem 2.3 with Mji being the matrix of coefficients.   

Lemma 5.5. (Conditional distribution of  given Λ(π)) Let µXji,Ω¯ Xji,ω¯Xji and ∆Xji be partitioned as in theorem 

2.5. Then the conditional distribution of Hji = (Zji|Λ = λ) is given by 

, 

where 

µHji = µ2 + Ω21Ω−211(λ − µ1), γHji = γXji + ∆1T Ω¯−111ω2−1(λ − µ1), ω¯Hji = ω¯1, 

ΓHji = ΓXji − ∆T1 Ω¯−111∆1, ∆Hji = ∆2 − Ω21¯ Ω¯−111∆1, Ω¯Hji = Ω¯22 − Ω¯21Ω¯−111Ω¯12, ΩHji = ωHjiΩ¯HjiωHji, and 

. 

Theorem 5.1. (The lower convex order bound) The lower convex order bound Sl(π) to approximate 
the distribution function of the sum is 

given by 

 

with µHji, ΩHji, γHji, ∆Hji, ωHji, and ΓHji defined as in Lemma 5.5. 

Proof. The proof is same as the one given in Theorem 4.1.   
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6. Numerical results 

In this section we numerically illustrate the accuracy of the approximations obtained in the previous two 

sections by using two examples. We do not use a real data set to analyze the approximations since making 

inference on the unified skew normal distribution is difficult due to its large number of parameters, instead we 

use a hypothetical data to evaluate the accuracy. For the estimation of parameters of SUN we refer to Gupta 

and Aziz (2012). 

In the first example, the final wealth of yearly savings distributed as log unified skew normal random 

variables is computed using Monte Carlo method and the method presented in section 4. 

For n = 20, at every period i,i = 0,...,n − 1, consider the yearly savings amounts αi = 1,i = 0,...,19. That is, 

at the beginning of each year one unit of savings amount is invested in the considered asset. At time i = n the 

invested amount αn = 0, i.e, no contribution is made at the final period. The returns are considered to be 

independently and indentically distributed SUN random variables with parameters m = d = 1, µ = 0.02, γ = 0, 

ω = 1, Ω = Ω¯ = 0.03, Γ = 1 , and ∆ = 0.97. The results for some selected quantiles of the distribution function 

of the terminal wealth obtained by the Monte Carlo simulation (denoted by MCB) and from the convex lower 

bound (CLB) are presented in Table 1. 

Table 1: Comparison of the selected quantiles of the distribution of the final wealth in single asset case 

 

p MCB CLB Relative de viation 

0.01 22.5789 22.8575 1.23 % 

0.025 25.9758 26.1992 0.86 % 

0.05 29.7387 29.9730 0.78 % 

0.95 152.9541 151.5890 -0.89 % 

0.975 184.0342 182.4662 -0.85 % 

0.99 226.9628 222.1930 -2.10 % 

 

The simulated results are obtained from 5000 random paths. The relative deviations of the approximated 

values from the Monte Carlo simulation are computed as follows: 

. 

Comparing the results obtained with the Monte Carlo simulations, all the lower bound approximations 

seem to perform reasonably well, in fact some of them are excellent. The approximations lose some precision 

in the tails of the distribution. 

In the second example, we illustrate the approximations for a portfolio consisting of two risky assets and 

one risk free asset. We consider the same savings amount as in the first example (that is, αi = 1,i = 1,...,n) and 

the weights are assigned as follows: 19% in the risk-free asset, 45% in the first risky asset and the remaining 

36% will be invested in the second risky asset. In addition, the yearly return of the risk-free asset is considered 
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to be 0.03. The parameters of the joint distribution of the risky assets are chosen to be m = 1, d = 2, µ = 

(0.06,0.1)T , γ = 0, ω = I2, Ω = Ω¯ = , and ∆ = (−0.95,−0.97) T . 

The results for the distribution function of the terminal wealth obtained by the Monte Carlo simulation and 

from the convex lower bound are presented in Table 2. As for the single asset case, the simulated results are 

obtained from 5000 random paths. 

From Table 2, it is noted that the approximation is still reasonably good when we consider a portfolio. The 

approximations at the tails of the distribution lose more precisions compared to the single asset situation. One of 

the reasons might be that in the multi-asset case we include an extra risky asset thus making the number of log 

unified skew normal random variables double compared to the single asset case. However, the approximations will 

surely improve with a better choice of the conditioning random variable Λ. 

Table 2: Comparison of the selected quantiles of the distribution of the final wealth in multi asset case 

 
p MCB CLB Relative de viation 

0.01 19.4143 19.7961 1.97 % 

0.025 22.0037 22.3248 1.46 % 

0.05 24.5388 24.7480 0.85 % 

0.95 124.8726 124.3719 -0.40 % 

0.975 152.1901 150.5944 -1.05 % 

0.99 196.4655 191.0344 -2.76 % 

 

7. Conclusion 

Extending the works of Marin-Solano et al. (2010), and Roch and Valdez (2011), we provide analytical 

expressions and numerical illustrations to approximate the distribution function of terminal wealth. From the 

numerical illustrations, we find that the VaR describing the terminal wealth obtained from lower convex order 

bound are competitive to those obtained from a more time consuming Monte Carlo method. The risk measure 

could be improved by other suitable choice of conditioning random variable Λ and considering other risk 

measures such as conditional tail expectation. 
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